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The band structure of the four known polymorphs of pentacene is computed from first principles using the
accurate molecular orbitals of the isolated molecule as the basis for the calculation of the crystalline orbitals.
The computed bands are remarkably different for each polymorph, but their diversity can be easily rationalized
using a simple analytical model that employs only three parameters. The effect of the electronic structure on
the hole mobility was evaluated using a simple model based on the constant relaxation time approximation.
It is found that the mobility tensor is highly anisotropic for three of the four considered polymorphs. The
practical implication of this prediction on the technology of thin-film organic transistors is discussed.

1. Introduction

The possibility of practical applications for organic semi-
conductors, demonstrated in the late 1980s1 and followed by
an impressive improvement of the performance and efficiency
of the devices based on such materials,2 have renewed the
interest of many researchers toward this field whose first
contributions appeared more than fifty years ago.3 Organic
materials (crystals or polymers) based on polyacenes, poly-
thiophenes, and polyetilene have been used to realize light-
emitting diodes (LEDs), thin-film transistors (TFTs), and
photovoltaic cells, and an increasingly large set of data on these
systems are now available.4-8

The most important property of these materials is the charge
carrier mobilityµ, whose lower limit for practical application
is 100 cm2 V-1 s-1. Organic synthesis provides, in principle,
the possibility to fine-tune the charge-transport properties, but
the mobility of these materials is very difficult to predict, and
the available mobility data lack a proper rationalization. Many
groups are therefore active in the development of phenomeno-
logical theories9 and computational models10-13to provide
reliable predictive and interpretative tools.

In ordered organic materials such as pentacene,2 the low-
temperature transport is described as band-like (i.e., delocalized
carriers move coherently across the crystal and are scattered
by the lattice phonons). This mechanism is characterized by a
power law dependence of the mobility upon the temperature (µ
≈ T-n).14-16 At higher temperatures (∼300 K), polaron transport
becomes important; that is, the charge carriers (and their
associated lattice deformation) move by thermally activated
hopping leading to an Arrhenius-type temperature dependence
of the mobility (µ ≈ exp(-Ea/kT)).17,18 The possibility of a
unified description of both transport regimes through suitable
effective Hamiltonians is discussed by several authors.9a,19-21

While phenomenological theories account qualitatively for
the observations, they cannot explain the differences observed
for similar materials, for which accurate electronic structure
calculations are needed. Analogous materials can show dramatic
differences in the transport properties,22 because the interaction
between molecules strongly and subtly depends on structural
details. We illustrate this point in the present paper, computing

the band structure of the four polymorphs of pentacene and
discussing the effect of pentacene polymorphism on the low-
temperature hole mobility. Since the first reports of high hole
mobility for the pentacene single crystal,23 several groups studied
this24-28 and related materials29-31 for their potential application
in organic electronics. Several pentacene polymorphs were
grown as thin films,33-38 and one of the thin-film structures
was shown to coincide35 with the bulk single-crystal structure
reported by two recent studies.32,35 A classification and a
rationalization was proposed by Mattheus et al.33 that also found
the conditions to reproducibly grow thin films of four crystal
forms.34 The possibility of different transport properties for
different growth conditions is of great technological interest.
In fact, one of the typical experimental setups involves pentacene
thin films, grown on a silicon oxide surface between the source
and drain electrodes, forming a prototype of organic thin-film
transistors (OTFTs).

To compute the band structure, we propose a first-principles
method that uses accurate molecular orbitals computed for the
isolated molecule as basis functions for the crystal wave
function. A simple analytical model will be proposed to interpret
all the band structure, and the results will be further justified
through the use of simple orbital overlap arguments. We will
not consider in this paper the polaronic mechanism of conduc-
tion, limiting our discussion to band-like low-temperature
conduction. According to recent measurements,16 the band-like
transport is the dominant one in pentacene up to ca. 300 K.

2. Method

The most commonly used packages39 for the first-principles
computation of band structures have been optimized for the
calculation of materials with a relatively small number of atoms
in the unit cell and with band gaps ranging from several
electronvolts to zero (metals). Molecular crystals contain up to
hundreds of atoms per unit cell, and they are usually insulators
or semiconductors. The appropriate description of molecular
orbitals (MOs) for the isolated molecule requires a split-valence
atomic basis set with the inclusion of polarization functions.
This basis set makes the calculation of the molecular crystal
band structure extremely heavy and the convergence of a self-
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consistent calculation quite problematic. However, in the vast
majority of the cases, the electronic coupling between MOs
localized on different molecules is much smaller (∼<0.3 eV)
than the band gap (>1.5 eV). Under this condition, the localized
MOs provide a natural basis for the calculation of the molecular
crystal band structure. In the following, we describe the
computational method after reviewing, for completeness, the
general equations for the calculation of the band structure on a
localized basis.

Background. Let {φR} be a set of localized one-electron
wave functions in an elementary cell (e.g., atomic orbitals or a
linear combination of them). The Bloch orbitals (i.e., the basis
functions adapted for the translational symmetry) are39

whereT is an element of the direct lattice with unit vectorsab,
bB, andcb.

andk is a vector of the reciprocal space (unit vectorsab*, bB*,
andcb*):

The matrix elements of the effective one-electron Hamiltonian
are

The elements in the sum depend on theT - T′ difference, and
because

we get

The relevant matrix elements are conveniently labeled as

In a molecular crystal, the{φR} set can be defined by the
molecular orbitalsof the isolated molecule(s) (one set of orbitals
for each molecule in the elementary cell). Because the{φR}
are localized, one can make a (short) list of nonzeroVRâT

elements, which can be determined on a purely geometrical
basis.

The Hamiltonian matrix elements are a summation, with a
phase factor, over the list of nonzero couplings:

where we expressedT andk in terms of their components (eqs
2-3). Because the{φR} are non-orthogonal, the overlap matrix
elements should be computed as in eqs 8-9:

The band energies for eachk value are the solutions of the
generalized eigenvalues equation:

Implementation. For a given crystal structure withm
molecules in the elementary cell, the MOs for the different
isolated molecules are computed. These orbital energies are the
elementsVRR(T)0).40 We used the B3LYP hybrid functional for
this computation, but any other method (Hartree-Fock, HF, or
density functional theory, DFT) based on the one-electron
effective Hamiltonian could be applied. An orbital window
around the Fermi energy is selected, because usually few higher-
energy occupied orbitals and lower-energy virtual orbitals are
sufficient to describe the transport properties (the interaction
between selected and excluded orbitals is neglected).

A list of couples of interacting molecules (molecules whose
orbitals interact) has been compiled. In our case, we include
the interaction between two molecules if the closest distance
between their atoms is smaller than a cutoff distance of 5.5 Å.
Each couple of molecules is identified by the five-number
code: m1, m2, [na, nb, nc]. m1 andm2 identify the molecules in
the elementary cell;na, nb, nc identify the translation of the
moleculem2 with respect tom1. For example, 1 2 [0 0 0] is the
coupling between molecules 1 and 2 in the elementary cell, and
1 1 [1 0 0] is the coupling between molecule 1 and its image
translated by 1 unit vectora.

The couplings matrix elementsVRâT and the overlapsSRâT

are computed between all the considered orbitals on the
interacting molecules according to eqs 8 and 11. The Hamil-
tonian is the same used for the isolated molecule calculation.
Because one-electron Hamiltonians depend on the density
matrix, one of the greatest difficulties in the calculation of the
band structure of metals or small-gap semiconductors is the
calculation of the total electron density through integration over
the reciprocal space.39 For a molecular crystal, this step is not
necessary, because, to an excellent degree of approximation,
the density matrix of the isolated molecule can be used to build
the one-electron Hamiltonian for the crystal. Therefore, the
electron density is computed self-consistently for the isolated
molecule and used to build a tight binding-like Hamiltonian
for the crystal.

A grid of points{ki} for which the crystal orbitals have to
be computed is selected. For each valueki, the matricesHk and
Sk are built, and eq 12 is solved forCk andεk. The size of the
algebraic problem is given by the total number of occupied and
virtual orbitals included in the calculation.

Other Tight Binding Schemes.Differently than in other tight
binding schemes (EH,41 DFTB42) that compute the tight binding
interactions between all the atom pairs, in this approach the
strong intramolecular interactions are treated at a high level of
accuracy, while the weaker intermolecular interactions are
approximated perturbatively. It is therefore possible to arbitrarily
improve the description of the MOs by increasing the atomic
basis set without increasing the size of the crystal Hamiltonian
(eq 12) that always contains the same subset of MOs.

ψR
k )

1

xN
∑

T

φR(r - T) exp(ikT) (1)

T ) naab + nbbB + nccb (na, nb, nc integers) (2)

k ) xaab* + xbbB* + xccb* (xa, xb, xc real) (3)

〈ψR
k |H|ψâ

k〉 )
1

N 〈 ∑
T′

φR(r - T′) exp(ikT′)|H|
∑

T

φâ(r - T) exp(ikT)〉 (4)

)
1

N
∑
T′

∑
T

exp[ik(T-T′)]〈φR(r-T′)|H|φâ(r-T)〉

(5)

∑
T′

∑
T

f(T - T′) ) N∑
T

f(T) (6)

〈ψR
k |H|ψâ

k〉 ) ∑
T

exp(ikT)〈φR(r)|H|φâ(r - T)〉 (7)

VRâT ) 〈φR(r)|H|φâ(r - T)〉 (8)

HRâ
k ) 〈ψR

k |H|ψâ
k〉 ) ∑

T

VRâT exp[i2π(xai + xbj + xck)] (9)

SRâ
k ) ∑

T

SRâT exp[i2π(xai + xbj + xck)] (10)

SRâT ) 〈φR(r)|φâ(r - T)〉 (11)

HkCk ) SkCk
ε

k (12)
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A similar approach was used recently by Cheng et al.11 that
employed a semiempirical Hamiltonian to compute the coupling.
An important difference is that we include in this treat-
ment all the couplings between the selected subset of orbitals
and not only the coupling between degenerate orbitals. These
additional matrix elements could be particularly important in
the presence of quasi-degenerate molecular orbitals or in molec-
ular crystals with different molecules in the elementary cell.

Crystal Geometry. We used the unit cell parameters of the
four polymorphs as they are listed in Table 2 of ref 33. We
also refer to this paper for a description of the crystal structure
and a possible explanation for the polymorphism. Here, we
identify the polymorphs asI , II , III , andIV corresponding to
a distanced(001) between theirab planes of 14.1, 14.4, 15.0,
and 15.4 Å. The experimental determination of their cell
parameters is described in ref 35 for polymorphI and ref 34
for polymorphsII , III , andIV . PolymorphI is the commonly
adopted structure in single crystals, and its detailed structure is
available from X-ray diffractometry.35,32As in other polyacenes,
two nonequivalent molecules per unit cell are arranged in
herringbone fashion with space group symmetryP1h. The other
polymorphs adopt a similar structure, but the detailed crystal
geometry was not determined. To make our data set uniform,
we performed geometry optimizations of all four polymorphs
with the MM343 force field, and these geometries were used
for the calculations presented in the next section. Many crystal
structures of aromatic hydrocarbons were considered in the
parametrization of this force field that is therefore expected to
also perform well in our case.

To further test the approximation of the method, we also
performed geometry optimizationandband structure calculation
using the approximate DFT approach implemented in the code
SIESTA.44 The results, not presented in this paper, indicate that
this completely different approach leads to quantitatively similar
results for the geometry and the band structure. It is likely that
the rigidity of the molecule and the constraints of the unit cell
parameters lead to a relatively sharp potential energy minimum
that is easily predicted by the various methods.45

3. Results and Discussion

Figure 1 shows the results for a band structure calculation of
polymorph I of pentacene. All ab initio bands are computed
using the B3LYP hybrid density functional and the 6-31G(d)
basis set. A recent systematic study by Huang and Kertesz46

shows that this basis set is adequate for the evaluation of the
intermolecular coupling and that the error due to the incom-
pleteness of the basis set is<4%. In the calculation, we included
HOMO - 1, HOMO, LUMO, and LUMO+ 1 for each of the
two molecules (eight MOs per unit cell). As expected, the bands
appear in couples, each couple originating from the correspond-
ing two quasi-degenerate MOs. The bandwidths are in the range
0.07-0.20 eV, more than one order of magnitude narrower than
the ones found in typical inorganic semiconductors.

We are interested in the hole mobility as it can be measured
in MOSFET-like devices.2 In such experiments, a gate electrode
injects holes in the material, and these are responsible for the
charge transport across the source and drain electrodes. Only
the two bands originating from the HOMO orbitals are relevant
for the conductance in this case, and we will focus on their
description in the following. The structure of the other bands
may be of interest, however, for other types of experiments such
as photoconductivity measurements47 or n-type transport in
doped semiconductors.48

Figure 2 shows the projection of the highest occupied bands
along the reciprocal space unit vectorsa*, b*, and c* for the

four pentacene polymorphs. It is immediately clear that the band
structure is very different for the four considered cases. The
bandwidth for polymorphIV is more than four times larger than
for polymorphsI and II . In the remainder of this paper, we
will first show how these large differences can be easily
rationalized, and then, we will consider the effect of the
computed band structure on the measured hole mobility.

Rationalization. Table 1 collects the computed HOMO-
HOMO couplings. These are a portion of the couplings included
in the calculation, but as we will see, they contain essentially
all the needed information. The signs of the couplings are
consistent across Table 1 (i.e., the phase of the MO basis is the
same for the different polymorphs). It is worth noting that the
sign of the intermolecular coupling is important in predicting
the overall band structure in two- and three-dimensional crystals,
and, therefore, crystal structure calculation purely on the basis
of the energy splitting of molecular dimers may lead to incorrect
results. The coupling between molecules displaced along thec
vectors is, as expected, much smaller. Four symmetry-

Figure 1. The eight computed bands for polymorphI of pentacene
(four occupied, four unoccupied). The labeled points indicate the
following positions (in terms of reciprocal space unit vectors):Γ (0,
0, 0), X (1/2, 0, 0),Y (0, 1/2, 0), Z (0, 0, 1/2).

TABLE 1: Couplings (cm-1) between HOMO Orbitals of
Close Couples of Pentacene Molecules for the Four
Polymorphsa

couple of molecules polymorph

m1 m2 [na nb nc] I II III IV label

1 1 [0 0 1] -0.1 0.0 0.0 -0.1
1 1 [0 1 -1] -47.8 -60.8 -3.8 -0.5
1 1 [1 0 0] 411.2 492.6 -232.4 -715.3 A
1 1 [1 1 -1] -3.2 -3.4 -3.3 8.5
1 2 [-1 0 1] 0.4 0.1 3.6 3.9
1 2 [0 -1 1] -0.2 -0.5 0.0 0.0
1 2 [0 0 0] -599.5 -316.5 154.6 805.6 B
1 2 [0 0 1] -9.8 -9.9 55.6 4.3
1 2 [0 1 -1] 0.1 0.1 0.0 0.0
1 2 [0 1 0] 1053.0 970.9 956.9 960.6 C
2 2 [0 1 -1] -25.8 -41.5 1.3 0.1
2 2 [1 -1 0] 0.1 0.0 0.0 0.1
2 2 [1 0 -1] 0.0 0.0 -1.0 -0.1
2 2 [1 0 0] 400.3 494.2 -320.1 -749.5 A′
2 2 [1 1 -1] -3.9 -3.7 3.7 -0.5

aMolecular couples equivalent by symmetry are omitted.

Band Structure of Pentacene Polymorphs J. Phys. Chem. B, Vol. 109, No. 5, 20051851



independent coupling matrix elements between molecules in the
ab plane are much larger than the others and determine the
structure of the highest occupied bands. We labeled the largest
couplings as A, A′, B, and C in Table 1, and we showed the
molecules involved in these couplings in Figure 3 (we note that
the A and A′ couplings, albeit not identical by symmetry, are
very similar in magnitude for the four polymorphs). Figure 2
shows the band structure computed including only the HOMO
orbitals, and these four elements are essentially identical to the
more accurate calculations using a larger space.

An analytical expression for the higher occupied bands can
be derived by takingA ) V11[100] ) V22[100], B ) V12[000], and
C ) V12[010] and setting to zero the energy of the HOMO orbital
on the two molecules. We neglected the intermolecular overlap
and used the symmetry relationVRâT ) VâR(-T). Using eq 9, we
can write the elements of the 2× 2 Hamiltonian matrix as

The Hamiltonian eigenvalues are

where

The bands computed using eqs 13-17 are reported in Figure

Figure 2. (I-IV) The two highest occupied bands for the four pentacene polymorphs computed as outlined in section 2 (solid lines). Dashed lines
show the results of calculations including only the HOMO orbital of each pentacene molecule and only the four major intermolecular couplings.
In the approximate calculation, the dispersion along thec* axis is zero.

Figure 3. The symmetry-independent couples of molecules (labeled
as A, A′, B, C) with the strongest HOMO-HOMO coupling are
indicated by the thick arrows. The C coupling is along thea-b
direction: the relative position of the molecules along this direction
changes only slightly for the four polymorphs, and consequently, the
C coupling is only marginally affected by the polymorphism.

H11
k ) H11(xa, xb) )

A{exp(i2πxa) + exp[i2π(-xa)]} ) 2A cos(2πxa) (13)

H11
k ) H22

k (14)

H12
k ) H12(xa, xb) )

B[1 + exp(i2π(xa + xb))] + C[exp(i2πxa) + exp(i2πxb)]
(15)

E1/2
k ) H11(xa) ( |H12(xa, xb)| (16)

|H12(xa, xb)| ) {2B2[1 + cos 2π(xa + xb)] + 2C2[1 +

cos 2π(xa - xb)] + 4BC2(cos 2πxa + cos 2πxb)}
1/2 (17)
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4. Interestingly, all the basic features of the complete calculations
(Figure 2) are retained using these simple formulas.49 This
suggests that the differences in the highest occupied bands of
the four polymorphs can be ascribed almost exclusively to the
change in the A, B, and C couplings.

To analyze in detail the relation between the crystal geometry
and its electronic structure, we showed in Figure 5 the relative
position of the two HOMO orbitals involved in the A, B, C
coupling matrix element. As usual, positive overlap corresponds
with a negative Hamiltonian matrix element.51 When going from

polymorphI to polymorphIV , the A and B couplings change
sign, while the C coupling is approximately constant. The
change in sign is due to a small “sliding” of one molecule with
respect to the other that causes the overlap to change from
negative to positive in A and from positive to negative in B.
This extreme sensitivity of the coupling to apparently minor
structural changes was already noticed for other interesting
π-stacked systems50 and is related to the high number of nodal
planes in the frontier orbital of conjugated molecules. As also
illustrated in Figure 3, the molecules along thea-b axis

Figure 4. Highest occupied bands computed analytically from eqs 15-17 (to be compared with Figure 2).

Figure 5. The overlapping couples of orbitals (labeled A, B, C as in Table 1) determining the basic features of the highest occupied bands for the
four polymorphs.

Band Structure of Pentacene Polymorphs J. Phys. Chem. B, Vol. 109, No. 5, 20051853



maintain their relative position approximately constant in all
four polymorphs. For this reason, the polymorphism does not
affect the C coupling (that is between molecules along this axis)
and influences only the couplings A and B.

We note how this simple rationalization is made possible by
the use of the MOs of the isolated molecule as a basis for the
calculation and would have not been possible if plane waves
or atomic orbitals were used as the basis. The possibility of
linking accurate computational results with chemical intuition
is particularly important for organic materials whose electrical
properties could be, in principle, fine-tuned through chemical
synthesis.

Transport Properties. The band-like transport properties of
inorganic semiconductors are usually modeled through the
semiclassical Boltzmann equation52 solved using advanced
Monte Carlo techniques.53 This method requires the knowledge
of the scattering matrix elementsSkk′ that express the probability
that an electron in the bandn and statek is scattered to the
statek. Various scattering mechanisms (e.g., crystal defects or
lattice thermal vibrations) influence the matrix elements whose
calculation from first principles is very demanding. Very often,
the scattering matrix elements are taken as parameters and fitted
to the experiments.53-55

A study of the importance of the different scattering mech-
anisms was not presented for organic materials such as penta-
cene, and the absolute mobility is therefore not computable from
the band structure alone. However, it is possible to introduce a
few approximations that allow a comparison between the
transport properties of the different polymorphs.11 Because the
holes in a p-type semiconductor are found almost exclusively
in the levels close to the valence band maximum (k0), the band
dispersion can be expanded in a quadratic form around this
position:

whereµ and ν are one of the Cartesian directionsx, y, andz
andM is the inverse of the effective mass tensor:

We adopt therelaxation time approximation,52 according to
which an electron with wave vectork suffers a collision (on
the average) everyτ(k) interval, and the state distribution
emerging from any collision coincides with the equilibrium
distribution.56 Because all of the collisions occur in a region
close tok0, we also assume a constant (k-independent) relaxation
time that leads to the following expression for the mobility:57

The temperature dependence of the mobility, in our simplified
model, is incorporated entirely in the relaxation timeτ that is
temperature-dependent. When the band-like transport mecha-
nism is the relevant one, therelatiVe magnitude of the mobility
tensor elements are determined byM-1.

The effective mass can easily be computed from the band
structures and provides a straightforward way to compare the
effect of the different band structures on the mobility. In Table
2, we reported the inverse effective mass tensor for the four
polymorphs together with the position of the valence band
maxima. Thex axis of the tensor is parallel to thea crystal

vector, and they axis in on the plane defined by thea andb
vectors. The isotropic effective mass is not very different for
the four polymorphs and is between 2.5 and 3.9me (electronic
masses). We note in eq 19 that the effective mass decreases as
the band dispersion increases and that it decreases also when
the cell dimensions increase (compressing the reciprocal-space
dimensions). For this reason, notwithstanding the much smaller
dispersion, organic semiconductors based on larger conjugated
molecules have an effective mass similar to that of the typical
inorganic semiconductors. For a similar reason, the mobility
along thec crystal axis (roughly parallel to thez axis) is not
much smaller than in the other directions (thec vector being
the largest in modulus).11

Although the τ parameter can be slightly different from
polymorph to polymorph (and therefore, the comparison be-
tween different polymorphs can be only approximate), a clear
difference between the different crystal forms is given by the
anisotropyof the mobility.58 This can be better evaluated by
computing the principal components of the mobility (i.e.,
diagonalizing theµ matrix and finding the orthogonal axis that
makesµ diagonal).

To simplify our discussion, providing at the same time the
most easily verifiable prediction from our model, we considered
the two-dimensional conduction through theab plane of the
crystal. This is the practically important process in thin-film
organic transistors, because the hole migrates between the
electrodes driven by a field parallel to theab plane. Moreover,
it was suggested that the conduction perpendicular to theab
plane is negligible in a real device, because the gate electric
field localizes the holes on the interface.59 We recomputed the
bands and the effective mass tensor for the two-dimensional
crystal (a monolayer of the (001) plane), and we plotted in
Figure 6 the principal components of the mobility tensors (to
within a multiplicative constant).

The mobility is extremely anisotropic for polymorphsI-III ,
while for polymorphIV , it is more uniform in theab plane.
This observation is of extreme relevance for the application of
pentacene thin layers in an organic transistor. In fact, it is usually
not possible to impose the crystal orientation (e.g., the direction
of the a axis with respect to the electrodes) in the growth
process, while it is possible35 to control the growth of one
particular polymorph. According to our calculation, it is
therefore advisable to grow thin layers of polymorphIV to build
devices with a reduced dependence of the mobility on the
orientation.

The largest component of the mobility is directed ap-
proximately along thea-b direction, the same direction along

TABLE 2: Results of the Effective Mass Calculation for the
Four Polymorphs: Position of the Valence Band Maxima in
the Reciprocal Space (expressed as in eq 3), Inverse
Effective Mass Tensor (from eq 19), and the Isotropic
Effective Mass

polymorph

I II III IV

valence band maximum xa 0.377 0.000 0.500 0.706
xb 0.465 0.000 0.500 0.958
xc 0.988 0.500 0.500 0.725

inverse effective xx 0.058 0.617 0.390 0.406
mass tensor (me

-1) xy -0.092 -0.371 -0.288 -0.091
xz 0.002 -0.028 -0.018 0.000
yy 0.504 0.259 0.261 0.316
yz -0.041 -0.066 0.005 -0.001
zz 0.202 0.294 0.269 0.058

average effective mass (me) 3.92 2.56 3.26 3.84

E(k) ) E(k0) -
p2

2
∑
µV

(kµ - kµ
0)(M-1)µV(kV - kV

0) (18)

(M-1)µV ) - 1

p2(∂
2E(k)

∂kµ ∂kV
)

k0

(19)

µ ) eτM-1 (20)
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which the relative molecular position is constant for all
polymorphs. If we compare Figures 5 and 3, it seems that this
direction is determined by the strongest intermolecular HOMO-
HOMO coupling (labeled as C in Figure 3 and Table 1).60

4. Conclusion

In this paper, we computed the band structure of the four
known polymorphs of pentacene that can be grown on a silicon
oxide substrate. The computed bands are remarkably different
for each polymorph. Focusing on the highest occupied band,
we showed how these differences can be fully rationalized using
a simple analytical expression that depends only on three
parameters. This simple analysis is made possible by the use
of a molecular orbital basis to express the crystal wave function,
a choice that allows a straightforward connection between the
numerical results and the chemically intuitive picture of
overlapping molecular orbitals. We have found that the largest
coupling between the HOMO orbitals involves molecules along
the a-b direction, and practically, it stays unchanged from
polymorph to polymorph. The other couplings undergo sub-
stantial changes that modulate the overall band shape.

A simple method based on the constant relaxation time
approximation was used to correlate the computed bands with
the hole mobility tensor at low temperature. Studying the hole
mobility in the (001) plane, we found that the largest principal
component of the mobility tensor is approximately parallel to
the a-b direction. The other component is almost negligible
for polymorphs I-III , while it is only slightly lower for
polymorph IV . A practical consequence of this prediction is
that polymorphIV should be preferred in an OTFT device
whenever the crystal orientation is not controllable to get more
reproducible results. Alternatively, one of the other polymorphs
can be used provided that the most convenient orientation can
be imposed.

Our considerations are limited to the band-like conduction
mechanism that applies only at low temperatures. Several
quantities computed here (like the intermolecular orbital cou-
plings) can also be used in the analysis of the transport

dominated by the small polaron hopping mechanism, and the
inclusion of this regime in the modeling is currently under
investigation in our group. Another important aspect that needs
a careful assessment in the near future is the actual length of
the mean free path of the hole (or electron) in organic
conductors, a quantity that can be rigorously determined by only
including in the model the effects of the electron-phonon
coupling.61 The modeling of transport properties need to be
revised if the mean free path of the carriers is close to the device
dimension.62
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